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ABSTRACT 

We present new numerical and theoretical 4results concerning kink-antikink 
collisions in the classical (nonintegrable) @ field model in one-dimensional 
space. Earlier numerical studies of such collisions revealed that, over a small 
range of initial velocities, intervals of initial relative velocity for which' 
the kink and antikink capture one another alternate with regions for which the 
interaction concludes with escape to infinite separation. We describe the re- 
sults of a new high-precision computer simulation that significantly extends and 
refines these observations of escape "windows". We also discuss a simple theo- 
retical mechanism that appears to account for this structure in a natural way. 
Our picture attributes the alternation phenomenon to a nonlinear resonance 
between the orbital frequency of the bound kink-antikink pair and the frequency 
of characteristic small oscillations of the field localized at the moving kink 
and antikink centers. Our numerical simulation also reveals long-lived small- 
scale oscillatory behavior in the time-dependence of kink and antikink velocity 
following those collisions that do not lead to capture. We account for this 
fine structure in terms of the interaction between kink (and antikink) motion 
and small amplitude "radiation" generated during and after the collision. We 
discuss possible implications of our results for physical systems. 
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I. INTRODUCTION 

Over the past several years it has become increasingly apparent that spati- 

ally localized, nonlinear excitations--"solitary waves"--contribute signifi- 

cantly to the behavior of a wide variety of natural systems, from organic poly- 

mers and biologica tructures through plasmas to quantized fie1ds.l Yet 

despite the clear importance and frequent analytic accessibility of these soli- 

tary wave excitations, their interactions, which can control many features of 

the dynamics of these systems, are in general poorly understood. 

To be sure, in some cases systems can be modeled by equations in which the 

solitary waves are "solitons" in the strict sense. I,2 In these models, an 

infinite number of conservation laws lead to the complete integrability of the 

equations and so constrain the dynamics that these interactions are essentially 

trivial; 12 solitons pass through each other with only a "phase shift" or "time 

delay",1'2 and the entire interaction can be described analytically. A cele- 

brated example of this class of models, and one which we shall later use for 

comparison, is the sine-Gordon equation, 

Pu(x t> ati - w + sin u(x,t> = 0 , (1.1) 

for which the static single kink (S) and anti-kink (5) soliton solutions can be 

written as 

-1 (x-x ) 

uS =2n- u 
s 

= 4tan (e * 3 (1.2) 
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More commonly, the underlying models do not contain strict solitons. 

Either there is some physical perturbation--a defect, an impurity, or a weak 

coupling to another system--which destroys the complete integrability, or the 

"bare" model itself is simply not integrable.3 In these cases, interesting and 

highly nontrivial interactions can occur. Since here one must typically resort 

to numerical simulations, it becomes both challenging and important to extract, 

at least qualitatively, the mechanisms underlying the observed interactions. 

In this article we study the interactions of solitary waves in the non- 

integrable one-dimensional, classical 'j4 theory. This model is defined either 

by the Lagrangian density (whence the name 'j4) 

5?(x,t> = @)2 - @!$2 - %(I$2 - 1)2 

or by the resulting equation of motion 

?3&&‘$+‘$=0 . 

(1.3) 

(1.4) 

From either the Lagrangian density or the field equation, one can see that the 

conserved energy of the system is 

E = J dx[4(g)2 + $($$)2 + k(e2 - 1121 - (1.5) 

Equation (1.4) has static single kink (K) and anti-kink (K) solitary wave solu- 

tions of the forms 
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x-x 
4 

K(R) 
= +tanh (2) , 

fi 
(1.6) 

which are qualitatively very similar to the solitons of equation (1.2). Indeed, 

in mathematical terms, both models are just nonlinear Klein-Gordon equations de- 

fined on the infinite line.4 It is thus of interest to mathematics to under- 

stand the similarities and differences of these models. 

Apart from this mathematical interest, the @4 model is of substantial 

interest in physics, where it arises in a number of applications. Historically, 

the first important use of the $4 theory (involving only the static limit) was 

in the Ginzburg-Landau phenomenological theory of second order phase transi- 

tions.5 More recently, the one-dimensional e4 theory has been generally applied 

at a more microscopic level to structural phase transitions in the displacive 

limit6-17 and specifically to uniaxial ferroelectrics. 7-8s11 The role of the 

solitary waves in both the thermodynamics 9,11,15,16 --where they appear as 

"fundamental" excitations in the partition function--and the dynamical re- 

sponse7,8J~-17 --where they appear as mobile domain walls, 10-17 leading to 

cluster formation13s14 and possibly explaining observed "central peak" phenom- 

enon8JI-17 --has been extensively studied. A related but distinct application 

of the one-dimensional +4 model has been as a phenomenological theory of the 

nonlinear excitations in linear polymeric chains, such as polyacetylene. 18,19 

Here the kinks correspond to the nonlinear excitations having the celebrated 

exotic spin-charge relations. 20 In quantum field theory, the one-dimensional 

e4 model has been used as an example to illustrate the connection between non- 

linear classical excitations and quantum particles. 21 Further, when coupled to 

fermions, it has been used as a ' toy" model of nuclear physics 22 and as an 

illustration of the nontrivial effects of topology on fermion number. 23 
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Finally, higher dimensional versions of the Q4 theory play a central role in the 

models of the spontaneous symmetry breakdown required in the unified theories of 

the electromagnetic and weak interactions. 24 

Motivated by this combined mathematical and physical interest, a number of 

researchers 1os25-32 have studied kink-antikink interactions in the $I~ model 

numerically, using digital computers. All of them have reported that Kk colli- 

sions with certain initial relative velocities end with kink and antikink 

reflecting from one another, while with other initial velocities the collisions 

end with Kk capture into a bound state. Most surprisingly, most10'2832gY31332 

of these authors have reported that there is more than one range of initial 

velocities for which the collisions end in reflection, and that these reflection 

regions alternate with more than one range of incoming velocities for which the 

collisions end in Kk capture. To the best of our knowledge, there is no 

theoretical explanation, in the published literature, of this unexpected alter- 

nation .pattern. 

In this paper we present the results of a new, more extensive numerical 

study of Kk collisions in the 44 model, and describe a semiphenomenological 

theory of the structure that we see. Numerically we confirm earlier claims, and 

we also observe many more, narrower, alternating regions of capture and reflec- 

tion than hitherto reported. We also observed unanticipated fine structure in 

the time-dependence of the outgoing velocities of kinks and antikinks that leave 

interactions ending with Kk reflection. Our theory accounts qualitatively for 

all our observations. 

In Section II, after beginning with some elementary remarks contrasting 

kink interactions in the sine-Gordon and $4 theories, we describe in detail the 

most significant 'results of our numerical simulations and the ingredients in, 

and predictions of, our semi-phenomenological theory. In Section III we present 
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the detailed justification of this theory. Section IV describes and explains 

the fine structure, mentioned above, in the outgoing velocity of kinks and anti- 

kinks leaving interactions. In Section V we conclude with some remarks on both 

the limitations and the generality of our approach and indicate briefly pos- 

sible implications for real physical systems. In Appendix A we present the 

details of our numerical scheme and in Appendix B we include some calculational 

and conceptual background for our analytic results. 

II. QUALITATIVE DISCUSSION AND OVERVIEW OF RESULTS 

Before discussing the more intricate details of $4 kink collisions, it is 

useful to begin with a few elementary remarks comparing and contrasting these 

interactions with those of the sine-Gordon solitons. In the sine-Gordon theory, 

the interaction of a soliton (S) and anti-soliton (3) is described in their 

center of mass system by the analytic function 2,33 

U = 4 tan sinh(vt/&-vl) 

SS v cosh(x/Ji?) * I 
(2.1) 

In Figure 1 we present qualitative sketches of this function at different times. 

For large negative time (Fig. la) t = -T, the S and 5 are widely separated 

(Ax z 2(vT - ,/m &tv) but approaching each other (vS = -v, vs = + v). For 

t 2 0 (Figs. lb and lc) they interact in a highly nonlinear manner that nonethe- 

-less permits them to pass through each other "unscathed". For t = +T’ (Fig. Id) 

they are separating with final velocities equal to their initial velocities; the 

only effect is a small shift in the position that they would have reached had 

there been no interaction. 
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This "phase shift" or "time delay" can be shown, from (2.1), to be 

6x = 2(1-v2)%n(l/v) . (2.2) 

Note that when the S and 3 pass through each other, the region near x = 0 is 

left in the "ground state" with u = 271, whereas before the interaction it was 

at u = 0. This is possible because of the u + u + 2ixn symmetry of equation (1.1). 

In the case of Q4 interactions, we have no analytic guidance, and hence in 

Fig. 2 we sketch (again, qualitatively) several a priori possible results of Kk 

collisions. Figure 2a shows the initial state, with k and K approaching each 

other in their center of mass system. The configuration in Fig. 2b, in which 

the K and K appear to have passed through each other, is in fact impossible on 

energetic grounds alone. Since the region between the kinks is at some value 

q. not equal to a minimum of the potential, the energy of this configuration is 

E = V('#I,)*L, and hence L can not approach infinity. To reiterate: in the Q4 

theory, K and 'z can not pass through each other.34 Figure 2c shows a possible 

final state in which the K and 'i have reflected from each other. Anticipating 

the nonintegrable nature of the theory, we have indicated that vf # Vj. 34 In 

Fig. 2d we indicate the possibility that the i? and K "annihilate" almost immedi- 

ately in the collision, sending out dispersing "radiation" ("phonons", in the 

solid state terminology). Finally, in Fig. 2e we sketch a "final state" in 

which a long-lived, spatially localized, time-oscillatory state is formed; this 

state may decay in time by emitting "radiation". 

In principle, the behaviors sketched in Figs. 2c-2e are all possible. In 

practice, bur numerical simulations, consistent with earlier results, 25-32 show 

that only possibilities of Fig. 2c and 2e are observed. This is perhaps intu- 

itive physically; for it indicates that $4 kinks retain some of the robustness 
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TABLE I 

N,=n-2 Predicted 
Range of v Center Width Center (vg-v2)(2n+1)2 Av(2n+1)3 

.1926-.2034 .1980 .0109 .1990 

.2241-.2288 .2265 .0048 .2250 

.2372-. 2396 .2384 .0025 .2370 

.2440-.2454 .2447 .0015 .2437 

.2481-.2490 .24855 .OOlO .2478 

.2507-.2513 .2510 .0007 .2505 

.2525-. 2529 .2527 .0005 .2524 

.2538-.2541 .25395 .0004 .2538 

.2548-.2550 .2549 .0003 .2548 

1.39 
1.31 
1.29 
1.29 
1.29 
1.30 
1.31 
1.33 
1.33 

3.74 
3.50 
3.33 
3.30 
3.38 
3.44 

z-; 
4:3 

Table I: A tabulation of the range, center, and width in initial velocity of 
the reflection windows observed in o4 KK collisions. The last three 
columns give respectively, the theoretically predicted value of the 
window center and two quantities which our theory predicts to be con- 
stant. In the last two columns v = center of window and Av = width. 

of their sine-Gordon cousins. Further, by analogy to the relation between the 

sine-Gordon breathers and the S and 3 solitons, the localized oscillatory state 

in Fig. 2e can be thought of as a K + K bound state, 
25-28 in which the kinks are 

trapped by their mutual attraction. 25,30,32 Since the trapped state can be 

formed only if the kinks have time to lose sufficient energy in a collision, one 

expects trapping at low relative velocity, and (inelastic) reflection at high 

v.. 
1 

The full results of our numerical simulations are summarized in Fig. 3 for 

the range 0.16 2 Vi 5 0.4. In this plot, vf = 0 implies that no kinks exist in 

the asymptotic state; instead, a "trapped" oscillatory state is formed. As 

anticipated, at low initial velocities (Vi < 0.193...) a trapped state is always 

formed, and at high velocities (vi > vc = 0.2598...) the kinks always reflect 

inelastically. The striking feature of Fig. 3 is the sequence of regions of 

intermediate Vi in which trapping and reflection alternate. For definiteness, 
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let us call these regions below vc in which reflection occurs "reflection 

windows". A catalogue of the "reflection windows" observed in our numerical 

simulations is shown in Table I. 35 

The existence of a threshold above which the kink and antikink always 

reflect has been known numerically 10,25-32 and understood semi-quantitatively 30 

for some time. Further, the lowest three "windows" in the table have been ob- 

served in earlier work, 1oS25P27-2g*31-32 but no explanation of the origin of 

these "resonance windows" has been proposed. In the remainder of this article 

we shall focus on this resonance structure, presenting further results of com- 

puter calculations and formulating a simple, semi-phenomenological theory that 

is in good agreement with the numerical observations. We begin by describing 

here the ingredients in our theoretical approach and their relation to our 

numerical results. 

The first important ingredient is the observation that there is a crucial 

distinction between KR reflections above vc and those in the "resonance windows" 

below vc. Specifically, as shown in Fig. 4, above vc the K and k collide once 

and then reflect to infinity, whereas in the windows below vc the K and i 

collide, recede to finite separation, stop, and then return to collide again 

before reflecting to infinity. 28,32 Thus we shall henceforth use the term 

"two-bounce windows" to refer to these reflection resonances. Before the first 

collision and during most of the time between the two bounces the K and k exist 

as separate entities. Hence it is sensible to speak of a potential energy 25,30,32 

(or force) between them (see Appendix B) and of the kinetic energy of the trans- 

lational motion of each kink. The "two bounce" behavior indicates (1) that 

after the first collision the K and i are trapped by their attractive potential 

and hence that energy has been removed from their translational motion, but also 

(2) that after the second collision, this energy is at least in part restored, 
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allowing the kinks to escape. To explain this behavior one clearly needs a 

mechanism for transferring and storing energy. In view of the separation of the 

K and i? between bounces, it is natural to look for the mechanism in the small 

oscillations around a single kink (or antikink). These small oscillations, 6$, 

are determined by the equation 

g - 3 + (392 
K(R) 

- 1)6$ = 0. . (2.3) 

Fourier transforming with respect to time, one can convert this to a Schrodinger 

equation with potential [using (1.6)], 

VSCH(X) ’ (3@2 - 1) = 2 - 3 sech2 
(x-x0) 

UK) Jz ' 
(2.4) 

which corresponds to a well-known solvable (in fact, reflectionless) poten- 

tial 30,36,37 * In terms of the Fourier transform variable w, the spectrum of 

(2.3) has a continuum beginning at angular frequency wc = fi and two normal- 

izable modes, with angular frequencies w = 0 and w = ws = ,6??. The continuum 

corresponds physically to dispersive travelling waves that propogate to spatial 

infinity. The zero frequency mode, whose wave function, 61p,, is proportional 

to the spatial derivative of @K(k), corresponds to the translation of the kink 

(antikink). The mode with ws = mrepresents a localized deformation around 

the kink and can be considered physically as an internal shape mode oscillation 

‘of the kink. The normalized eigenfunction of the "shape mode" is 

&ps E 2-314 tanh 
x - x0 

sech 
x - x0 

Jz Jz l 

(2.5) 
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Since it is localized about the kink, this shape mode is the natural candi- 

date for the degree of freedom in which to store the translation energy of the 

trapped K and K in a two-bounce window. This hypothesis is further supported by 

the analysis of Sugiyama, 30 who, assuming that most of the kinetic energy lost 

in the initial K + i? collision is transferred to the shape mode, estimated the 

critical velocity for the first capture to be vc 2 0.25, in very good agreement 

with the actual vc = 0.2598... . 38 If we adopt this hypothesis, then because of 

the time-reversal invariance of equation (1.4), we may also conclude that if the 

initial state consists of an internally vibrating kink and an internally 

vibrating antikink, and if the amplitudes of vibration are chosen judiciously, 

and if the phases of the initial internal vibrations are synchronized properly 

with the time of impact, then the effect of a collision can be to extinguish all 

shape oscillations, with a concomitant increase in Ki kinetic energy. 

We claim that the second, liberating reflection of a kink and antikink 

whose initial speeds are in a two-bounce window is an example of this reverse 

process. The first reflection sets up shape oscillations which carry more 

energy3' than the kinetic energy of the original asymptotically separated K and 

k, so that the kink and antikink after the first collision are bound; the second 

collision extinguishes the shape vibrations, when the timing is right, restoring 

enough of the lost kinetic energy that the Ki are again unbound. Favorable 

timing in this case means that the occasion of the second impact coincides with 

the passage of the internal vibration through some phase angle characteristic of 

shape-mode extinction. Thus, the condition for restoration of Kk kinetic energy 

after the second bounce ought to be of the form 

wST 
= 6 + Earn (2.6) 
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where T is the time bewteen the first and second impact, 6 is some offset phase, 

and n is an integer. 

Figure 5 shows, in the points marked "X", the time between the two bounces 

of a kink and antikink with initial speed at the center of a two-bounce window, 

versus the ordinal number of the first nine windows (plus two, in order to get 

(s between zero and 27t). These correspond to the entries in Table I, reading 

downward. This figure also shows a straight line that passes through all the 

nine marks. The slope of the'line is 5.2, which compares well with the value 

(2.6). From the intercept of this line, 2TI/llJs = 2n @i'!j'~ 5.13, expected from 

the phase 6 is 3.3 (E n). 

The validity of the linear relat ion (2.6) is more dramatically illustrated 

in the sequences of pictures in Fig. 6, showing graphs of Q(x,t) at x = 0 as a 

function of time for collisions whose initial Kk speeds are at the centers of 

the first eight of our nine resolved two-bounce windows. As in Fig. 4, the two 

large spikes in each picture correspond to the two Kk reflections, while the 

bumps between the spikes 40 correspond to the sum of the tails of the shape 

oscillation waveforms centered on the kink and antikink. According to formula 

(2.6), one expects that each picture in Figure 6 should have one more bump in it 

than in the preceding one, and this is indeed what one sees. 

Although we cannot account quantitativety for the fact that we see no 

window corresponding to n less than three in (2.6), the existence of some non- 

trivial lower limit on n is not unreasonable. Presumably, when the interval 

between bounces is w;l(6 + 4~) and lower, the kinks do not have time to separate 

far enough to form well-defined shape oscillations and therefore resonance can- 

not occur. 

The second ingredient in our theory is a relation between the observed time 

between bounces and the initial velocity of the kinks. In Section III we shall 
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present heuristic arguments suggesting that for Kt initial speeds v just below 

V c, the time between the first two impacts of the kink and antikink should 

satisfy 

T(v) Q: (VP - v2)-% . (2.7) 

Although we can not rigorously prove this result--hence the "semi-phenomono- 

logical" nature of our theory--it is in excellent agreement with our numerical 

results (Figure 7), except that the naively predicted proportionality constant, 

(-2.4) is lower than the value (-3.0) found from the numerical results. Using 

the number from the simulation (3.0), equation (2.7) then implies that the 

window centers are located at 

v; = v’c - 1.37 

(2n + 617~)~ = vc - 
1.37 

(2n + 1)2 ' 
(2.8) 

Equation (2.8) shows that (v; - vi)(2n + 1)2 = 1.37, a constant for all n. 

This compares well with the figures in the sixth column of Table I, which shows 

the different values of (vf - $)(2n + 1)2, as determined directly from the 

numerical data figures in the first and third columns. 

Our resonance picture also enables us to understand, in a semiquantitative 

way, the window widths. In particular, since the resonance condition (2.6) 

indicates that the process of transfer of shape-mode energy back to KK kinetic 

energy is largely' independent of how many shape oscillations have preceded the 

second Ki? impact, we expect that the window width in velocity is determined by 

an angular width in shape-mode phase: that is, 

wsAT = 9 , (2.9) 
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with some constant (i.e., n-independent) 0. Setting AT = g Av, and using (2.7) 

with proportionality constant 3.0 gives 

A% N (1.7)8/(2n + 1)3 . (2.10) 

Comparing with the seventh column in Table I, we see that (2.10) is in reason- 

able agreement with the numerical results provided 8 hr 2.0. This is consistent 

with a theoretical estimate 9 5 2, which we shall derive in Section III. 

Before turning to the detailed derivations of our central results, we pause 

to discuss some obvious points raised by this qualitative discussion. First, 

there is no reason $ priori that n-bounce windows (n > 2), corresponding to 

initial speeds for which the "instant" of the nth KR collision coincides with 

the passage of the shape oscillation through the proper phase, should not exist. 

Since this was not observed in the data summarized in Table I, we shall not dis- 

cuss here the (obvious-but technically complicated) generalization of our reso- 

nance approach to this case. 41 Second, the version of the resonance theory 35 

sketched here implies the existence of an infinite sequence of increasingly 

narrow windows as v + vc from below. In fact, this version ignores entirely 

the effects of the continuum modes--"radiation"-- in the expansion around the K 

and R. These modes are excited at some level both at the "instants" of colli- 

sion and as the translating and oscillating kinks move back and forth between 

collisions. Since this radiation disperses to infinity, for very long inter- 

collision times--that is, by (2.7), for the putative windows with very large n-- 

the radiation would be expected to degrade the shape mode to the point that 

there is not enough energy available at the time of the second impact to unbind 

the K% pair. Thus there should be an upper limit on the n observed in two- 

bounce windows, although we shall not estimate it here. 
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That the radiation, although small, can play an important role in the KK 

interaction is also shown by some fine structure effects that we have observed 

both in the outgoing kink speed and in the behavior of $(O,t) versus time. 

These effects, which are discussed in detail in Section IV, can only be ex- 

plained by careful consideration of the coupling to radiation. 

III. QUANTITATIVE THEORY OF THE "TWO BOUNCE" RESONANCE WINDOWS 

A. Time Between the Two Kink-Antikink Interactions 

The solitary, "particle-like" nature of the Q4 kinks has led a number of 

authors25930932 to propose a phenomenological potential to describe nonrelativ- 

istic, elastic, KR interactions. This potential, V(x,), which is a function of 

the kink-antikink separation, is obtained by substituting the Ansatz function '$A 

$A ’ ‘$(cx - x0) + $-K(x + x0> + 1 (3.1) 

into the energy integral "(1.5). Thus the potential represents the energy of a 

field configuration consisting, at least for large x0, of a clearly defined, 

static, kink-antikink pair at separation 2x,. To describe motion in the system, 

it is natural (see also Appendix B) to allow x0 in (3.1) to become time de- 

pendent and to insert this time-dependent Ansatz into (1.5) to obtain an effec- 

tive Hamiltonian for x,(t). The result'is 

H = i&E + I(x + V(x,) , (3.2) 
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where M is the kink rest mass and the explicit forms of 1(x,) and V(X,)~'*~~ 

are, for completeness, given in Appendix B. For large positive xo, 1(x0) + 0 42 

and V(xo) takes the form, when the constant V(m) = 2M is subtracted, 

&x0) = V(xo) - 2M 2 -12M exp(-2$!xo) . (3.3) 

As might have been expected, this is a static Yukawa potential. Recalling that 

the Kk separation is 2x0, we see that the range of this potential is given by 

one over the "mass" of the travelling wave continuum, m = wc = a 

To describe the motion of the bound Ki? pair between the two bounces, we 

shall assume, as a first approximation, that the energy expression in (3.2) is 

conserved and, since this system is weakly bound, that the total energy is -ME, 

where E << 1. We shall use this to determine T(E), the time between bounces as 

a function of E. When this is done, we shall relate E to the initial kink and 

antikink velocities so that we will finally have T(v). 

Before presenting this determination, let us comment on several aspects of 

this effective Hamiltonian approach. First, the decomposition (3.1) is sim- 

plistic at small xo, where the kink and antikink overlap and lose their identity. 

This is not a big problem for determining T(s) because for v near vc the Kk con- 

figuration formed after the first impact is very weakly bound, so that the kink 

and antikink spend most of the time between their "collisions" at large x0, near 

the outside orbital turning points. This means that the small-x, behavior of the 

potential does not contribute to the leading behavior of T(E) and also that the 

term involving 1(x,) can be neglected.42 Second, when the shape modes are ex- 

cited, one expects them to induce an additional Ki? interaction with range 

determined by the shape eigenfunction (2.5). Even if the shape mode amplitudes 
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are small, this induced interaction might not be negligible, compared to the 

effects of V(x,), because the range of S$, which is 42, is longer by a factor of 

two than the range of V(xo) (in terms of 2x,), which is l/,/z. Third, the non- 

linear nature of the equation leads to coupling among all the modes--translation, 

shape, and radiation--which invalidates assumption of conservative translational 

motion. However, for small shape mode amplitudes and weak binding, this effect 

should be small. 

Let us now proceed to estimate the leading behavior of T(E), for small E, 

from equation (3.2). Setting the total energy in (3.2) equally to 2M - ME and 

neglecting the (nonleading) term involving Ids yields 

Mi; + V(xo) = 2M - ME . (3.4) 

Solving for the time between bounces in the usual way gives 

T(E) =2J 
dxo 

J-ex=qJ ’ 
(3.5) 

where the suppressed lower and upper limits on the integral correspond to the 

inner and outer turning points of the orbit. The outer turning point depends 

sensitively on E for E small, because g(xo) goes to zero for large x0. In con- 

trast the inner turning point is relatively insensitive to small E. Thus, for 

E << 1, we may approximate (3.5) by 

T(E) z To + 2 

-1 log(~~ 2-E s 
(Xo)min 

(3.6) 
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where (Xo)min and To are e-independent constants. The integral in (3.6) is 

elementary, with the result 

T(E) z To + g tan-l ( 
-2fl 

9 
CXo)mj n 

fi 
- 1>* 

(3.7) 

We next need to relate the amount by which the kinks are bound, -ME, to 

their common initial velocity, v, in the region in which v is slightly less than 

V 
C’ 

We shall first present a heuristic argument suggesting the analytic form of 

the relation and then show that the resulting form for T(v) is remarkably con- 

sistent with our data. Since we can not rigorously derive the form of T(v), we 

shall refer to our theory as "semi-phenomenological". 

In the initial kink-antikink collision, energy is lost from the kinetic 

energy of the kinks both to the shape mode oscillations and to radiation modes. 

Let use call the total energy in these modes &E(v). We shall assume that for v 

near v c, this energy and consequently the energy lost are smooth, slowly-varying 

functions of the available kinetic energy (a v2). For v < vc, the energy lost 

determines the binding energy according to 

6E(v) - Mv2 = ME , v < vc (3.8a) 

whereas for v > v c, the energy lost determines the outgoing kink speed (v,) 

according to 
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6E(v) - Mv2 = -Mv; , v>v c * (3.8b) 

The assumption of smooth variation of 6E implies a smooth continuation between 

the binding energy (for v < vc) and the outgoing kink speed for v > v 
C 

. We shall 

use this later to check our heuristic results. Since E = 0 at v = vc, 

bE(vc) = Mv: 

and thus, for v near vc, we expect 

WV) = Mv: + b(v2 - vp, + . . . . 

(3.9a) 

(3.9b) 

We expect b > 0, since for smaller v (and hence smaller available energy) we 

expect overall a smaller transfer of energy. Substituting (3.9b) into (3.8a) 

yields 

E = (1 - b/M)(vE - v2) , for v < vc 

(3.10a) 

with a = 1 - b/M, whereas substituting into (3.8b) yields 

v; = &(v2 - v;, ) for v > vc . (3.10b) 
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As a first check, we can compare Eq. (3.10b) to our numerical data. Figure 

3 shows the outgoing kink velocity (v,) as a function of the incoming kink 

velocity, v, for v > vc. For v close to vc, this curve is well described by the 

form 

2 
Vf = cx(v2 -p, , 

with 01 N 0.84, indicating that b/M = .16. Using (3.10a) this means 

E r cI(vZ - v2) , with 01 = 0.84 

for v < vc; and therefore, by (3.7) 

T(v) 

(3.11) 

(3.12) 

(3.13) 

As indicated in Section II, this agrees in shape with the results of the numer- 

ical simulation shown in Figure 7, although the numerical data favors the pro 

portionality constant 3.0. This 20% agreement is encouraging, for it indicates 

that we can understand semi-quantitatively the observed dependence of T on the 

initial velocit. Note that for the resonance theory we must use the actual time 

between collisions, and hence we take the form of (3.13) with the empirical 

constant 3.0. This leads to the remarkable quanitative agreement of theory and 

experiment shown in Table I. 

Before proceeding to our theory of 8, let us show how to use the notions 

introduced in this subsection to account in a rough way for the size of the 

oscillations bounded by the spikes in the pictures of Figure 6. 
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We shall try to estimate the amplitude of these oscillations by first esti- 

mating the amplitude of shape oscillations and then multiplying twice this 

amplitude (for the contributions of both kink and antikink) by the normalized 

wavefunction of (2.5), evaluated for x equal the maximum distance from kink to 

origin during the corresponding bound Kk orbit. This choice is motivated by 

recalling that, as we remarked previously, the kink and antikink spend most of 

the time between collisions near this maximum separation. This maximum distance 

will be determined by the outer turning point of (3.5), with E given by (3.12). 

First, to estimate shape-mode amplitudes, we define the shape-mode ampli- 

tude S by writing the shape-oscillation as (Se 
iwst 

+ S*e 
-iw,t 

my With this nor- 

malization, the energy in the kink's shape oscillation is 2]Sj2wE and the total 

of that in the shape oscillations of both kink and antikink is 41Si2wE, since all 

collisions studied numerically are symmetric under spatial reflection and hence 

give rise to an outgoing kink and antikink that vibrate as mirror images. Since, 

to a first approximation (see next subsection), most of the initial KR kinetic 

energy (-Mvz for v near vc) is transferred, on first impact, to shape oscilla- 

tion, we may set 

41s12w; - Mv: , (3.14) 

This gives ISI " 0.1. The maximum value of the coordinate x0 for a bound K!? 

orbit of binding energy ME satisfies, according to (3.2) and (3.3), 

exp(-2JZxo) = c/12 . (3.15) 
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Thus, according to (2.5) the value of "0, evaluated at this coordinate is approxi- 

mately 

f$.(y) - 2&e 
-x,/J? 5 

= 24(r;T) E c N (~)%(v~ - ,2+ . (3.16) 

To make the estimate, we use the result ct N 0.84 and find that (3.16) is between 

about 0.3 (for v = 0.198) and about 0.1 (for v = 0.254). 

Thus the combined total of the two shape-mode tails at x = 0 is estimated 

roughly to be 

2 x 0.2 x 0.2 x cos (phase + wSt) ry (0.1) cos (wst + phase) , (3.17) 

in all pictures, which is what one observes. 

B. The Energy in the Shape Modes and the Width of the Resonance Windows 

We first derive in this subsection an approximate expression for the energy 

in shape oscillation after two Kk reflections, as a function of the time between 

the bounces. We shall make the simplifying assumptions that no radiation is 

emitted in the process, and that the effect of a Kk collision on the shape 

oscillations occurs completely and instantaneously, at the moment of impact (to 

the extent that such a moment can be defined). The second assumption allows us 

to neglect the time-dependence of the energy in shape oscillations between col- 

lisions, and the first assumption allows us to determine the window boundaries-- 

and therefore window widths--by setting the shape mode energy, after two bounces, 

equal to the initial Kk kinetic energy. This signifies that after the second 

bounce, the kink and antikink are just barely unbound. 
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Since the shape mode amplitudes are small in this context, we shall also 

suppose in what follows that there is an approximately linear relation between 

the amplitudes of internal vibration of the Kk leaving a collision and the ampli- 

tudes of internal vibration of the incoming kink and antikink. In particular, 

let S represent the complex amplitude of kink shape oscillation before a colli- 

sion (assumed to take place at t = 0). Thus, as in the preceding subsection, 

before the collision the kink shape oscillation is (Se 
iwSt 

+ S*e 
-iwst 

)Qs. We 

stress again that it is not necessary to introduce a separate notation for shape 

oscillation of an antikink, since in the spatially symmetric collisions that we 

simulate numerically, kink and antikink vibrate as mirror images. Let S' repre- 

sent the complex shape mode amplitude after the collision. Then we suppose.. 

there are complex parameters a, 2, and p such that 

St EaS+IS*+p . (3.18a) 

Observe that if the collision takes place at time T instead of at time zero, 

(3.18a) is modified to read 

S' ZaS+ ZS*e 
-2iwsT 

+ pe 
-iwST 

. (3.18b) 

4 priori, a, Z, and p can depend on the kink velocity (or initial Kt bind- 

ing energy) preceding the collision. However, inasmuch as the window phenom- 

enon occurs in a small region of v, in which the velocities and binding energies 

are both small, we shall, in what follows, neglect the dependence of a, 3, and p 

on pre- (or post-) collision conditions. 

Since the initial conditions of our simulated Kt collisions never have any 

shape oscillation excited, our numerical results give us direct information 
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about p. In particular, energetics (i.e., the fact that shape-mode formation 

extinguishes kink and antikink translational motion at v = vc) implies that (as 

already argued in the preceding subsection) 

Mv2 = 4w2ip12 c- s ¶ (3.19) 

so that Ipl ,N 0.1. Also, the timing of the crests and troughs in the pictures 

of Fig. 6 gives 

Arg p z -n/2 . (3.20) 

The coefficients a and 3 cannot be determined from our data in a similarly 

direct way. We describe below an indirect way of constraining these parameters. 

When this is done we will be able to compute the amplitude of shape oscillation 

after two Kk impacts by successively applying transformations (3.18a) and 

(3.18b), with T equal to the time between impacts. 

To obtain information about a and 3, we exploit the time-reversal invari- 

ance of the original equation of motion (1.4). Time reversal interchanges the 

amplitudes S and S'*. Thus, if (3.18a) is to be an acceptable condensation of 

the time-symmetric (1.4), we should have, for all S, 

s* =’ (St*) = aSI* + 3s’ + p 
= (Ial + (112)S* + (al* + aX)S + ap* + (a + l)P . (3.21) 

This represents three parametric constraints 
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(3.22a) 

(3.225) 

(3.22c) 

Equation (3.22~) expresses a in terms of p and Z. Equation (3.22b) implies 

that 3 is pure imaginary. Equation (3.22a) is redundant. Equation (3.18a), 

simplified in accordance with (3.22), becomes 

S’ = - $ (1 + ig)S + ipS* + p , (3.23) 

where the real parameter J3 s -iZ. We defer discussing how to estimate 6 until 

the end of this analysis. 

Consider now the effect of two KR reflections, one at time zero and the 

other at time T, on the kink and antikink shape modes, when the initial state 

has no shape oscillation at all. Since the initial amplitude S is zero, the 

amplitude after the first impact, according to (3.23), is p. The amplitude 

after the second impact, according to (3.23) [modified according to (3.18b)], 

is then - 

S” = - $ (1 + ip) + i~p*e-2iwsT + pewiwsT 

Thus the energy in shape oscillation after two impacts is 

2 
4lS"l2,2 L 

S 16w$p12 cos 
2 wST 

7 I 1 - 2pe 

-iwsT/2 wsT 

sin - 2 I l 

(3.24) 

(3.25) 
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We have used equation (3.20) in deriving (3.25). 

Equation (3.25) implies that no energy is in the shape oscillations--i.e., 

the kink speed is unchanged after two collisions--for wST = (2n + l)n, which 

is precisely the condition (2.6) that characterizes the window centers (recall 

6 = 3.3 - n). 

To obtain the angular width, 0, of the windows, one then solves the equa- 

tion obtained from (3.25) by replacing wT in the right-hand side by (2n + 1)~ + 

2 6/2, and replacing the left-hand side by Mv2 N Mv: = 4u$lpl ; the result is 

1 = 4 sin' $ 11 + 2iBeiie'4 cos i I2 . (3.26) 

Expanding the right-hand side of (3.26) in powers of 9 and retaining only the 

leading order, one obtains 

e- 2/+/-z * (3.27) 

The desired estimate, 0 2 2, follows immediately, and from the empirical 

fact that 0 appears to saturate the bound, one concludes that B << 1. With 

p = 0, it is apparent that (3.26) has 0 = F N 2.1 as its only solution between 

zero and T[. Thus the theory accounts for the observed result that there is only 

one smooth "two-bounce" window for each integer n. 

Finally, we refer the reader to Figure 8 for a more direct check of the 

crucial assumption of nearly conservative transfer of energy between the shape 

and translational modes. The horizontal axis in this figure represents incoming 

kink speed; the vertical axis represents the ratio of outgoing to incoming 
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speeds, for those initial speeds that do not lead to the Ki? capture. The 

approximation of conservative transfer relied on in this subsection implies that 

each peak to the left of v = vc has a maximum value close to unity, as can be 

seen to be the case. 

III. FINE STRUCTURE IN @(O,t) AND vf 

A. Background 

In the preceding sections we have focussed primarily on the resonance win- 

dows and in particular on the critical role of the shape mode oscillations in 

determining these resonances. With few exceptions, we have neglected the role 

of the 'radiation' emitted by the collisions, and we have treated the final kink 

velocity, vf, as if it were a constant in time. In this section, we will cor- 

rect these omissions by discussing in detail the role of radiation in Kkcolli- 

sions and by describing some interesting 'fine structure' in the time dependence 

of the final velocity. We shall see that these effects are related. 

With regard to the resonance phenomenon, radiation plays the important role 

of an energy "sink", essentially removing energy from the KK translation and 

shape modes in a manner that precludes the retransfer to the bound Ki? pair. As 

we have argued previously, this provides a natural limit to the total number of 

observable windows of a given bounce number. In Figure 9 we show how, at a time 

T = 95 units after the first Kg collision, the initial Kk kinetic energy is 

distributed among the Kl? kinetic energy, shape mode energy, and radiation. 43 We 

see that, except for the highest velocities, the shape mode does absorb most of 

the lost kinetic energy. Nonetheless, the radiation modes clearly are excited 

in the collisions. 
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Before discussing this radiation in detail, let us first describe the 

(related) "fine structure" in the final kink velocity, vf. This "fine struc- 

ture" is shown in Figure 10, which plots v,(t) versus t for six values of the 

initial velocity greater than vc. Note that vf does not quickly approach an 

asymptotic value but instead oscillates rapidly about a mean, These oscilla- 

tions, which range from roughly 15% of the mean for the lowest initial velocity 

shown to roughly 5% for the highest, are the "fine structure". In our previous 

discussion and figures, where'a single asymptotic kink velocity was mentioned 

and plotted, we used the mean value of vf as determined by averaging over a 

time T,, = 20.0, which was chosen to be longer than any oscillation period 

observed in the numerical data. Although one might initially question this aver- 

aging when the velocity undergoes such sizable and rapid oscillations, we feel 

that the explanation presented in this section answers any questions on this 

point. A reJevant remark on this matter is that the "fine structure" is not 

limited to the behavior of v,(t) but is also observed in Q(x=O,t). Figure 11 

shows cp(x=O,t) versus t for six values of initial velocity. The rapid small 

oscillations are similar (but not identical to) those seen in v,(t), as illus- 

trated in Figure 10. To simplify the interpretation of Figures 10 and 11, we 

have calculated the power spectra of the fast Fourier transforms of these data 

in Figures 12 and 14, respectively. Figure 13 shows parts of Figure 12 but with 

an expanded horizontal scale. Note that the horizontal scale represents periods 

of oscillation rather than angular frequency, which would be 2n/(period). From 

these power spectra it is clear that the fluctuations in Figures 10 and 11 are 

dominated by a few discrete frequency components. In the remainder of this 

section we shall argue that these frequencies can be understood qualitatively 

in terms of radiation and its coupling to other modes. 
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Both from the energy partition graph of Figure 9 and from the success of 

our arguments in the preceding sections, we expect that the radiation amplitudes 

the kinks--and thus for quantities like vf(t) wh 

motion--the effects of radiation may be complicated 

to the kink shape oscillation. These expectations 

are small. Thus, at least in the regions away from the K and k, we expect that 

to good approximation they can be treated by simple linear superposition. Near 

ich are related to the kink 

by small but nonzero coupling 

are consistent with Figures 

12-14, which show that '$(x=O,t) contains just two dominant frequencies for all 

incoming kink speeds, whereas the spectra of v,(t) show considerably more 

structure. 

B. Quantitative Results and Fine Structure in @(x=O,t) 

To clarify the role of the radiation in both these structures, it is im- 

portant to distinguish two distinct components. The first component--which we 

shall henceforth call "prompt" radiation--is generated at the "instants" of Ki? 

impact. The second component--which we shall call "decay radiation"--arises 

from the decay of the shape oscillations of the kink and antikink. Specifically, 

since a “wobbling”, translating kink is not an exact solution to the full non- 

linear equations, 44 the shape mode will decay in second order in the expansion 

of Eq. (1.4) around the K or 'i. 

To model the effects of the prompt radiation (away from the kink and anti- 

kink centers), we consider the solution P to the linearized--that is, small 

amplitude--version of Eq. (1.4) with a 6 function source, 

a;P - a;P + 2P = c 6(x)6(t) (4.1) 
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with P(x,t) = 0 for t < 0. We shall not attempt to determine the proportion- 

ality constant, c. Equation (4.1) represents the production of freely propagat- 

ing relativistic waves of mass @ (the continuum threshold for small oscilla- 

tions about K or i?) by an instantaneous source. The instantaneous source ideal- 

izes the Ki? impact; t here is time from impact. 

The solution to (4.1) is 

P(x,t> 
i(wt + kx) 

/(w2 - k2 - 2) 

= c e(t - Ixl)J,(J2(V - xq > , (4.2) 

where the causal boundary condition on P has determined how one integrates 

around the poles. Jo is the usual Bessel function, and 8 is the Heaviside step 

function. For J2(t2 - x2) 2 1, we may use an asymptotic form for Jo, replacing 

(4.2) by 

P(x,t) = c e(t - Ixl) w - 

This result enables us to understand half of the dominant structure in Fig. 14. 

According to (4.3), P(x=O) is approximately proportional to t -4 cost/T for 

t >) 0. From this we conclude that the Fourier spectra in Figure 14 should all 

-display a peak at the fixed period 2n/fln 4.4, which is indeed the case. We 

shall indicate some signatures of the l/flenvelope at the end of this section. 
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kink moving out from the collision at velocity v. > O--that is, for Ix - votl << 

tv 45 
0 

--the radiation from the solution in (4.3) has the approximate form 

P(x,t) = c(l - vf,-‘” t+ cos( tJz 
m 

(4.4) 

For future reference, we note here that in the Lorentz frame of and near a 

Apart from the l/& envelope, this is simply a plane wave of frequency G/m, 

and dispersion relation IA? - k2 = 2 [as required by (4.1)]. The presence of the 

kink locally deforms such plane waves (see, for example, equation (2.9) of [8]), 

but we shall not need to take this deformation into account below. 

The field perturbation due to the "decay" radiation from the kink (anti- 

kink) shape mode is presumably dominated (in the K(R) rest frame) by the second 

order term in an expansion about '@K(R), whose first order term is the shape 

oscillation itself. The truncation of equation (1.4) that describes how a 

second-order disturbance (Q,) is determined by a first order one (lp,) is 

(4.5) 

It follows from (4.5) that if G1 is shape oscillation at w = ws = fl/fl, then q2 

a priori contains components of angular frequencies zero and 2w, = $. However, 

since the continuum for linear-order propagation is w = $!, the response at zero 

frequency does not extend to large distances, and one is left with only w = 6 

available for long-range effects. 

Thus we model radiation due to kink (antikink) shape mode decay in the kink 

(antikink) rest frame, by a field perturbation proportional (far from the source) 
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to co&& - WI) (up to phase), cut off at 1x1 2 m. This represents a 

plane wave of frequency $, propagating (with dispersion law w2 - k2 = 2) away 

from the kink (antikink) source at the origin of the coordinate system. The 

wavefront moving outward at the group speed &% is required since the shape 

mode begins "broadcasting" only at t N 0 when it is formed in the Kt collision. 

As in the case of prompt radiation, we shall not need detailed information about 

the way that the kink (antikink) deforms the waveform of the radiation emitted 

in the course of antikink (kink) shape-mode decay. 

In the "laboratory frame"-- that is, the frame of our computer simulation-- 

the radiation emitted by the shape mode of the kink (antikink) that leaves the 

collision region at (average) velocity +vo, as seen to the left (right) of the 

kink (antikink), is described by a field perturbation proportional to 

fi - 2v 2 - JGV 
cos(t ( O> cx( O>) 9 

JFyg p-q: 

up to phase. The fronts of these wavetrains move at speed 

<@73 - vo)/(l - v. J2-7) . 

(4.6) 

(4.7) 

These are consequences of Lorentz invariance. 

These results enable us to understand the remaining half of the dominant 

-structure in Figure 14. It follows from (4.6) that decay radiation from both 

kink and antikink contribute signals of the same angular frequency ($- 2vo)/ 

(1 - vy to cJ(X=O). The third column of Table II displays the period associ- 

ated with this angular frequency for each incoming speed represented in the 
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sequence of pictures in Figure 14. The average outgoing speeds v. in the second 

column are taken from the pictures in Figure 10. These periods compare well 

with the periods corresponding to the left of the two peaks in the spectra of 

Figure 14. For an incoming speed v = 0.8 this peak is too close to that corre- 

sponding to prompt radiation (27r/$) to be distinguished clearly in the Fourier 

spectrum. We have, accordingly, listed in the last column of Table II the 

period of beating between these two theoretical frequencies, for direct compari- 

son with the time-domain data in Figure 10. 

TABLE II 

V vO 2n(R - 42)-l 

0.3 0.14 2.9 8.1 

0.4 0.28 3.2 11 3 

0..5 0.39 3.4 15.8 ' 

0.6 0.50 3.7 23.6 

0.7 0.60 4.0 42.5 

0.8 0.71 4.3 136.6 

Table II: A tabulation of the expected frequencies in +(x=O,t) for different 

initial velocities (v) and observed averaged final velocity (v,). 

The third column represents the period of the shape mode "decay 

radiation", whereas that in the fourth column is the period corre- 

sponding to the beating of this frequency with the "prompt" radiation. 

Note that according to (4.7), the wavefronts of decay radiation cannot 

reach the origin for v. ) $% SC 0.82, and so decay radiation can make no con- 

tribution to $(x=0) in this case. None of the speeds in the second column of 

Table II exceed-this threshold. Note, however, that the critical outgoing speed 
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beyond which the wavefront of kink (antikink) decay radiation cannot reach the 

receding antikink (kink) is %($ - fi) E 0.52, which is the physical solution of 

the equation 

V o = (J2T5 - v,)/(l - v. Jm) . (4.8) 

Beyond this threshold, decay radiation should make no contribution to the fine 

structure in the time-dependence of kink or antikink speed. Two outgoing speeds 

in Table II do pass this point, and a third comes close. There are clear signa- 

tures for this in the fine structure in v,(t), as we shall point out shortly. 

C. Fine Structure in v,(t) 

The computer program that generated the velocity data shown in Figure 10 

defines "kink position'L as the largest positive value of x at which the field $ 

crosses zero. Writing 

41 = tanh ( ; > + 64' (4.9) 

for the field configuation near the kink in its (average) rest frame, we see 

that the zero crossing is 

X 
0 g -n wqx=o (4.10) 

to first order i'n Se. An observer in the laboratory frame sees this as 45 
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x0 z vat - J2 Ji-7$ sg(x,t.J~;)l,, . (4.11) 

The rest frame of the kink is useful for our purposes because, in view of 

the time-independence of the linear-order equation (2.4), it permits a conven- 

ient frequency analysis of perturbations like Se. In the kink rest frame, the 

field configuration (4.4) of nearby prompt radiation becomes 

(constant) x (t + v,x) -4 co5 t$! ) (4.12) 

and the field configuration (4.6) of nearby radiation from antikink shape-mode 

decay becomes 

(constant) x cos{(l - vz)-'[t(Jg(l + v:) - 4v,) - x(2(1 + v:) - 2JGvo)l] (4.13) 

These are consequences of the Lorentz invariance of Eq. (1.4). 

In the present instance, SQ is a sum of four terms, representing four dis- 

tinct effects: (1) a shape-mode solution, s, to the linearized equation (2.4); 

(2) a continuum eigenmode, d, of (2.4) approaching the decay radiation form 

(4.13) at large (2 l/z) distances from the kink center; (3) another continuum 

eigenmode, p, of (2.4) approaching the prompt radiation form (4.12);47 and (4) a 

remainder, r, representing the (presumably) small effects of the nonlinear 

coupling of d, p, and s. 

Recalling the discussion of shape mode decay in the preceding subsection, 

we suppose that the dominant contribution of r comes from the second order term 

in an expansion of $ whose first order term is d + p + s. Thus, 2 priori, 
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according to (4.11), we expect the dominant terms in i. to have angular fre- 

quencies 

t$, : [fi(l + v5, - 4v ](I - ()-', Rp z @(I - v;)' , RS f m(1 - v:)' (4.14) 

(i.e, J1-g times the frequencies of d, p, and s, respectively), and also all 

sums and differences of the frequencies in (4.14), taken two at a time. 

However, not all the frequencies that are a priori available will correspond 

to significant effects in S$. Components with frequency R, or RS + RS can play 

no role. They arise from the coupling of the spatially antisymmetric shape mode 

to the spatially antisymmetric kink; and since the field equation (1.4) is in- 

variant under x c+ -x, this can only produce spatially antisymmetric contribu- 

tions to Se. In particular, such terms in 64 must vanish identically at x=0. 

Components with frequencies Rd + Rd, Rp f Rp, and Rd * Rp are also expected 

to be relatively unimpirtant. They correspond to terms in S$ that are O(d2), 

O(p'), and O(pd) respectively. In view of the small amount of energy in radi- 

ation (as compared with shape modes) such contributions should be insignificant 

next to terms in SQ that involve only one power of d and/or p. 

Thus we conclude from our radiation model that components with the follow- 

ing angular frequencies should dominate the Fourier spectra of x0, shown in 

Figures 12 and 13: 

(4.15) 

These correspond to terms in S$ that are O(d), O(p), O(ds), and O(ps), respec- 

tively. 
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The periods associated with the angular frequencies listed in (4.15) are 

catalogued in Table III, for all the values of v corresponding to the data 

shown in Figures 12 and 13. These periods compare well with the periods corre- 

sponding to the peaks in the spectra of Figures 12 and 13. 

For v = 0.5 and 0.6 the periods involving Qp are too close to those invol- 

ving Rd to be distinguished clearly in the Fourier spectra. As in Table II, we 

have listed in the last column of Table III the period of beating between these 

two sets of theoretical frequencies. The patterns visible in Figure 10 are con- 

sistent with the figures listed in this column. 

TABLE III 

V 

2n 
V 

0 Qd + %i 

2rt 2n 2n 

'p + 's s 'd 

0.3 0.14 2.0 2.4 3.2 4.5 

0.4 0.28 2.3 2.5 4.0 4.6 

0.5 0.39 2.5 2.6 4.6 4.8 

0.6 0.50 2.7 2.7 5.1 5.1 

0.7 0.60 -- 3.0 -- 5.6 

0.8 0.71 -- 3.4 -- 6.3 

2n 

'd - 's 

8.4 

15.4 

25.9 

37.6 
-- 

-- 

2n 

Rp - % 

33.4 

34.5 

36.1 

38.1 

41.3 

47.2 

2n 

'p - Qd 

11.2 

27.7 

91.1 

3141.6 
-- 

-- 

Table III. Aiabulation of the different periods expected to occur in vf(t) for 

different initial velocities (v). The average final velocity is vo. 
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Note that for v = 0.7 and 0.8, Table III contains no entries in columns 

listing periods involving Rd. As indicated at the end of the preceding sub- 

section, for these speeds antikink decay radiation cannot contribute to kink 

velocity because the antikink decay radiation wavefront travels more slowly than 

the outgoing kink. In particular there should be no beats visible in the pic- 

tures corresponding to these speeds in Fig. 10, and this is indeed the case. 

We are now in a position to comment on experimental signatures of the l/,/t 

modulation in P. It folJows from the foregoing discussion that for v = 0.7 and 

0.8 all the dominant contributions to i. come from contributions to @I that are 

of first order in p. Thus we expect the oscillations in the last two pictures 

in Figure 10 to be under an envelope approximately proportional to l/&, which 

is indeed so. 

The l/& envelope is also apparent in Figure 15, which shows oscillations 

in outgoing kink speed when the incoming speed is equal to 0.2, which is the 

midpoint of the largest. two-bounce window. To understand this figure, recall 

from section III that for such a value of v, the energy in shape oscillation-- 

and therefore also in "decay" radiation--is minimal. Therefore, of the six fre- 

quencies listed in (4.15), only that corresponding to the "prompt" radiation-- 

RP 
--is expected to appear in the vibrations shown in Figure 15. Since the term 

is Se with frequency Rp is p itself, the l/,/t modulation must appear. Note that 

this argument is somewhat oversimplified, since for v = 0.2--as for all incoming 

speeds below vc for which the K and k escape to infinity--there are two Kk 

"impacts" and hence two sources (differing in the time of their emission) of 

"prompt" radiation. Nonetheless, both of these should, for t large compared to 

both collision times, fall off like l/,/t and hence the envelope seen in Figure 

15 is still anticipated by our arguments. 
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V. CONCLUDING REMARKS 

When the details are stripped away, the central idea underlying our mech- 

anism for the structure in kink/antikink collisions is a resonant energy ex- 

change between the translational--"center of mass"--motion of the two kinks and 

an isolated (in frequency) shape mode oscillation internal to each kink. CJear- 

ly this mechanism is not restricted to the G4 theory, and thus from a mathe- 

matical standpoint, the phenomenon of parametric windows of escape that alter- 

nate with regions of capture should not be regarded as exceptional. Indeed, 

this phenomenon has been observed previously 48 in what initially seems an en- 

tirely different context: namely, in time-dependent Hartree-Fock (TDHF) calcu- 

lations of nuclear collisions in a (quasi)-one-dimensional geometry. From a 

mathematical perspective, the TDHF-equations can be viewed as a set of coupled, 

nonintegrable nonlinear Schrodinger equations, 2,48 and it is thus not terribly 

surprising that they could illustrate the resonance phenomena. Interestingly, 

in TDHF the individual "solitary waves" --which are just the individual nuclei-- 

& have (at least) two isolated, internal shape mode oscillations. 48 As a 

function of relative velocity, the collisions of these "nuclei" show two clear 

escape ("scattering") windows beJow the first capture ("fusion") threshoJd. It 

is possible that more extensive numerical study would reveal further windows, 

but it is also possible that the existence of two competing internal modes 

destroys the fine details of the resonance mechanism. 

Very recent Jy, a numerical study 49 of a parametrically modified sine- 

Gordon-like model,50 in which the familiar potential V(u) = (1 - cosu) is re- 

placed by 
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v(u) = (1 - 4 (1 - cos u) 
(1 + r2 + 2r cos u) (5.1) 

has revealed simi Jar window structure. For values of r such that there exists 

one isolated internal shape mode (0 > r 2 -0.2), the two-bounce window theory 

provides excellent agreement with the data. For values of r such that there are 

many internal shape modes, some windows remain but the fine detail of the two- 

bounce predictions is washed out. This is qualitatively consistent with the 

TDHF results.48 

A crucial question requiring further investigation is whether the require- 

ment of an internal oscil J ation, localized about the solitary wave, is abso- 

lutely essential to the resonance phenomenon. Intuitively, one might initially 

expect that a "wave packet" of continuum modes, centered about some specific 

f requency9 Wpeaks could be set up by the initial collision and later resonantly 

"return" its energy to the translation mode. For kink interaction in more 
* 

general models--in particular, for collisions in which the kink and antikink 

never clearly separate as they do between the two bounces in Q4--we certainly 

can not exclude this possibility. Nonetheless, the observations that (1) con- 

tinuum modes disperse, rather than remaining localized with the kinks and (2) 

the existence of (a continuum of) other modes near wpeak shouJd lead to a “wash- 

ing out" of detailed resonance structure suggest that this possibility is 

unlikely. Interestingly, results4' on the model described by equation (5.1) 

suggest that, for those values of r for which there are no kink shape modes 

(r > 0), there is also no resonance structure in KK collisions. To answer this 

-question properly will require making a rigorous distinction, at least in 

perturbation theory, between the localized and continuum modes around a single 

kink." 
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Let us now turn to the potential physical implications of our analysis. 

Quite generally, the phenomenon of resonant capture/escape alternation should be 

observable in interactions of many types of extended objects (not necessarily 

restricted to one dimension) that support isolated modes of internal vibration 

that do not damp out too rapidly. 52 At a more specific level, one can look for 

direct applications of the one dimensional $4 theory in quasi-one-dimensional 

solid state systems. 6-20 The possibility that these resonance effects might 

arise in the equilibrium thermodynamics of these systems 11,12,16,17 as 
, say, 

clear modifications of independent kink motion, seems remote, for the velocity 

range spanned by the resonance is very small, and the bulk behavior of these 

materials involves many kinks and antikinks, with the shape modes of each ex- 

cited by differing amounts. However, the more general effect that @4 kinks 

capture at low relative velocity and reflect at high may be of consequence to 

some thermodynamic quantities. 

In the time-dependent dynamics 7,8,10-17 of these systems, however, the 

effects of this resonance structure may prove more interesting. It may affect, 

for example, cluster formation13*14 and consequently the behavior of dynamic 

correlation functions. Further, if one considers the mechanism underlying the 

resonances--that is, the exchange of energy between translation and shape oscil- 

lation--a number of questions for further study arise. If, for example, kink- 

antikink bound states are responsible for characteristic enhancements away from 

zero frequency in certain dynamic correlation functions, it is possible that 

this exchange could lead to broadening of these enhancements because it makes 

the Kk binding energy--and therefore the bound orbital period--less we1 l- 

defined. Of course, for closely-bound RK pairs, it becomes hard to make sense 

out of the notion of well-defined shape modes for the individual kinks. Indeed, . 

this is precisely the reason given in Section II for the absence of the windows 
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corresponding to the lowest integers (n = 0,1,2). Nonetheless, this application 

seems to merit further study. 

Finally, an interesting potential application of the shape mode-translation 

coupling has been suggested 19,53 in the context of a phenomenological +4 model 

of polyacetylene [(CH)x].18'1g The hope is to excite the shape modes of charged 

kinks in (CH), by illumination with light of the appropriate frequency. If the 

shape mode-translation coupling is strong enough, this could result in an in- 

crease in the effective soliton temperature sufficient to decrease perceptibly 

the electrical conductivity. In this context, it is important to note that this 

shape mode is apparently not an artifact of the (p4 model, as calculations 54 in 

more microscopic models of (CH), reveal the same sort of shape mode. 
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FIGURE CAPTIONS 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

A schematic depiction of the interaction of a soliton (S) and an anti- 

soliton (3) in the sine-Gordon equation. (a) The initial condition, 

at t = -T; (b) and (c) the field configurations at t = -E and t = +E, 

respectively (E z 0); (d) the final field configuration at t = +T'. 

Note that when the S and 3 pass through each other, the region near 

X = 0 is left in the ground state with u = 271 instead of u = 0. 

A schematic depiction of "possible" results of kink (K) and antikink 

(k> collisions in e4 theory. (a) The initial state, t = -T; (b) a 

putative final state in which the K and R pass through each other. 

This state has energy E a V($,)*L and hence, as argued in the text, 

L -I m, and it cannot be an asymptotic state of the system: (c) a 

final state in which the K and k reflect, presumably inelastically 

(vf # Vi); (d) a putative final state in which the K and K have 

annihilated rapidly to produce dispersing "radiation"; (e) a "final" 

state containing a spatially localized, time oscillatory motion plus 

small radiation. This state is very long-lived, but decays eventually 

into radiation. 

The (time-averaged--see Section IV) kink velocity (solid curve) after 

a Kk collision as a function of the initial kink velocity. A final 

velocity of zero means Kg capture into a bound state. The dashed 

curve (which is almost indistinguishable from the data) is a fit to 

the form (constant) l 
2 2% (v - vc) for v above and close to vc. 

@(x=O,t) versus t for Kt collisions (a) in a "two bounce resonance 

window" below vc and (b) above vc = 0.2598. 
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Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Fig. 10. 

Fig. 11. 

Fig. 12. 

The time between the first and second Ki? impacts for incoming speeds 

at the centers of the two-bounce windows as a function of the window 

number (points marked "X"). The straight line is a linear fit. 

$(x=O,t) versus t for incoming speeds at the centers of the first 

eight two-bounce windows. 

The time [T(v)] between the first and second Kk impacts as a function 

of the incoming speed v < vc (solid curve). The dashed curve is a fit 

to (constant)/jv. 

The ratio of the (time-averaged--see section IV) kink speed after a KK 

collision to the initial speed, as a function of the initial velocity. 

Note the relatively elastic nature of the reflections below vc. 

The partitioning of the initial Kk kinetic energy into final kinetic 

energy, shape mode energy, and radiation energy, plotted as a function 

of the initial KR speed for v > vc. 

The kink velocity after a Kk collision [vf(t)] as a function of time 

for initial kink velocities of 0.3, 0.4, 0.4, 0.6, 0.7, and 0.8, re- 

spectively. The colJisions occurred at times 20.7, 16.3, 13.6, 11.7, 

10.3, and 9.2. 

@(x=O,t) versus t after a Kk collision for initial kink speeds of 

0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, respectively. 

The power spectrum of v,(t) versus oscillation period (= i'rt/angular 

frequency). 

the numerical 

by 106 

Fig. 13. The same as F 

his figure was generated by a fast Fourier transform of 

data in Figure 10. The vertical scale is multiplied 

gure 12 but with an expanded horizontal scale. 



Fig. 14. The power spectrum of @(x=O,t) versus oscillation period (= 2n/angular 

frequency). This figure was generated by a fast Fourier transform of 

the numerical data in Figure 11. 

Fig. 15. The kink velocity after Kt collision as a function of time for an in- 

coming speed of v = 0.2 near the center of the widest two-bounce 

window (solid curve). The dashed curve is a fit of the envelope to 

(constant) l (t - tlast collision) 

-5 

- 
The second impact occurred at 

time T = 47. 
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APPENDIX A 

THE NUMERICAL METHOD 

The numerical scheme used to solve Eq. (1.4) was a simple finite differ- 

ence technique. The field variable @(x,t) is discretized in space and time and 

is represented by $7 where i is the spatial index and n is the temporal index. 

The numerical step sizes are denoted by Ax and At. Then to second order Eq. 

(1.4) becomes 

cpy+l - 2@? + q1 

At2 Ax2 
(A. 1) 

This is easily solved for $y+l in terms of previously calculated quantities. 
w 

This method is stable for At < Ax (Courant condition). We found that the 

results converged for step sizes -0.01 and for most of the numerical work the 

step sizes were Ax = 0.01, At = 0.009. Further discussions of numerical 

accuracy can be found in Reference 28. 

The starting function needed for this work is a widely separated kink and 

antikink moving towards each other with velocity v. This supplied 0(x, t = 0) 

and 4(x, t = At), i.e., the first two rows needed for Eq. (A.l). The precise 

definition of the starting function is 

$,(x,t) = tanh -I (x + vt - x0) - tanh 4[ (X - vt + X0) + 1 
si Jz 

(A. 2) 

Y E l/p-i7 . 
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For this work the initial distance from the origin (x0) was set at 7.0. Dis- 

cussions of variations in xo can be found in Reference 28. 

One difficulty with solving the $4 equation numerically is that energy 

given off during the Ki interaction will propagate to the edge of the numerical 

grid, be reflected and eventually reach the center again. Given the delicate 

interplay between shape mode oscillations and translational motion, even small 

amounts of reflected energy could alter the results. Some thought was given to 

schemes for damping the oscillations at the grid boundaries thus eliminating 

reflections. Such schemes, however, seemed to be only partially effective and 

were discarded. The method used in this work to eliminate reflections was 

simply to make the grid large enough so that during the times of interest re- 

flections could not get back to the center. The price for this was a large 

increase in computational time and memory. (A factor of 2 can be gained by 

shrinking the grid with the light cone as time advances.) 

Since Table I is the main numerical result in this work, the numerics lead- 

ing to its generation should be discussed in more detail. As indicated above, 

the step sizes used were Ax = 0.01 and At = 0.009 with an initial kink distance 

from the center of x0 = 7. The runs were made for a time T = 300 after the 

first Kk collision. This is a critical parameter since for some initial veloci- 

ties a Ki? capture can be mistaken for a bounce followed by escape if T is too 

short. A larger T would have been desirable but because of the boundary condi- 

tions the computational time and memory requirements go as T2, thus making 

larger times with the above Ax and At impractical. Great care was taken to make 

certain that no reflection windows were missed in the velocity range studied 

(v < 0.2555). For low v where the windows are fairly large Av = 0.001 was used 

to scan for the windows while Av = 0.0001 was used to determine more precisely 
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the window boundaries. At higher v the scan was made with Av = 0.0001. In 

total the calculations for Table I used about 20 hours of Cray-1 CPU time. The 

critical velocity vc (= 0.2598) was determined with these same numerical param- 

eters and Av = 0.0001. 

The velocity region 0.2555 < v < vc has been largely ignored in this work. 

In order to resolve the very narrow windows in this region velocity scans with 

Av = 10-5 and smaller would have to be used. While possible this would, how- 

ever, consume large quantities' of computer time. It would be interesting to 

determine if the windows continue indefinitely or stop at some well-defined 

point that is not an artifact of the numerical scheme and/or computer time 

limitations. 
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APPENDIX B 

THE KINK/ANTI-KINK POTENTIAL AND COLLECTIVE COORDINATES 

In Section III we introduced an effective potential, V(x,), for the inter- 

action between kink and antikink as a function of their separation, 2x,. We 

also described the relative motion of the bound Kt pair by considering x0 as a 

function of time and integrating explicitly the large separation form of the 

equations of motion for x0. The fundamental approximation involved in this 

calculation is the replacement of the (infinitely) many degrees of freedom of 

a kink in the continuum field theory by a single "collective coordinate," x0, 

which describes the gross features of the kink motion. In this Appendix we 

discuss first the background technical details for the calculations of Section 

III and then the more general problems involved in using collective coordinates 

to describe kink motions. 

Following previous calculations 25,30,32 we define the Ki? potential as the 

total energy of a static field configuration of the form in (3.1). Explicitly, 

we shall consider the Ansatz function 

Q~(x; x,,y,) = [l - tanh y" 
fl 

(x + x0) + tanh - x,)1 , (B. 1) 

where for purposes of our later discussion we have slightly generalized the form 

in (3.1) to allow for a change of scale (y,) for the kink and antikink. Only 

the special case y, = 1 is of direct relevance to Section III. 

The energy in this static field configuration--which, of course, is not a 

solution to the full field equation (1.4) except for yo = 1 and in the limit 
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x0 + 033 --can be evaluated as a function of xo and y, by performing the integra- 

tion indicated in (1.5). 

One finds, for x0 and y, considered as time independent parameters 

1 2 
+ 4 (4, - 1)21 

- vl(xo,Yo) + v2(xo'Yo) 

with 

V1(Xo’Yo) = I dx 

y ‘0 = 4 J dx[sech 4 3 (x + x0) + sech 
4 Yo 

~ - (x - x0) 
G' 

- 2 sech' 2 (x + x,)sech' k (x - x,)1 

and 

v2(xo,yo) ' sf dx 4 1 (fj12 - 1)2 A 

tanh fl y,x, 2 Yo 
= 

sech @ y,~, s dx sech 
2 3 (X + x,)sech 

Jz z (x - xo) 

(B.2) 

(B.3a) 

x (1 - 
tanh $? y,x, 

Zsech &! y,x, 
x + xo)sech2 3 (x - x 1,' . 

Jz 
(B.3b) 
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In deriving (B.3b) we have used the identity 

sech fl yoxo[tanh x + x0) - tanh - x,)1 

= tanh $ yoxo[sech x + x,)sech -x0> * (B.4) 

The integrals in (B.3) can be expressed as the k = 0 limit of Fourier 

transforms which can be evaluated by contour integration. We skip the details 

and simply quote the results that 

V1(Xo'Yo) = Jz Y,I: g - 
Zsech* fl y,x, 

m Y,X, - tanh Jz Y,x,)I (B.5a) 
tanhs $? y,x, 

and 

4 
tanh fl y,x, 

CQ YoXo - tanh &? y,x,) 

4 
tanh* ,@ y,x, 

{(3 - tanh' fl yoxo)fl y,x, - 3tanh fl y,x,) 

+ 2 

tanha @ y,x, 
((5 - 3tanh' fl y,x,)fl y,x, + 4 tanh3 fl y,x, 

(B.5b) 
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These results are in agreement with the previous calculations in the liter- 

ature. 3oa32 From (8.3) and (B.4) one can evaluate the asymptotic form of V(xo) 

for x0 + a. For arbitrary y,, one finds 

Nxo ,Y,) = $2 ( 3 (y, + s) + 8e 
-2flYoxo 

xO+- 
0 

C(Y, - f) - J2 YoXo(Yo - +,I, 
0 0 

(B.6a) 

so that for the undeformed static kink/antikink pair, y, = 1, 

-2Jzx 
w, 9 1) z Jz [ i- 8e ‘1 . 

xO" 

(B.6b) 

Recalling that the kink mass, M, in our (dimensionless) units is M = 2fi/3, we 

see that V(m,l) = ZM, so that g(xo) defined in the text is indeed given by (3.3). 

If we allow x0 and--again for purposes of our later discussion--y0 to be 

functions of time, then (1.5) leads to an effective Hamiltonian describing the 

(coupled) motion of the now time-dependent parameters x,(t) and y,(t). The 

potential energy term in the effective Hamiltonian is just that given by (B.Z)- 

(B.4). The kinetic energy term is defined by 

a$, 2 
T(xo,yo) = .I’ dx ; (~1 9 (B.7a) 

-where 

(B.7b) 



53 

One finds 

ml(xo ,Y,) 
T(xo,yo> z 2 

m3 
“E + m2(xo,Yo>~o~o l 2 (x0 ,Yo)$ l (B.7) 

where 

Y2, O3 
ml(xo,yo) = 2 J dx(sech4 &? y,(x + x0) + sech4 $! y,(x - x0) 

-CO 

+ Zsech' fl y,(x + xo)sech2 ,@ y,(x - x0)) 

= si Y,l: 4 + 
8sech* $! yoxo 

m Y,X, - tanh fl Y,x,)I , (B.8a) 
tanh3 fl y,x, 

m2(xo'Yo) +!?; d 2 x sech' fi y,(x + xo)sech2 fl y,(x - x0) 
-09 

= Jz xoc 
4sech* ,/? y,x, 

(6' Y,X, - tanh fl Y,x,)I , (B.8b) 
tanh3 p y,x, 

and 

m3(xo,yo) = $ .f dx[(x + x0)' sech4 fl y,(x + x0) + (x - x0)' sech4 ,@ y,(x - x0) 

- 2(x2 - xg)sech' @ y,(x + xo)sech2 fi y,(x - x0)] 

sech* fl y,x, 
= $$ (2( g - 1) - tanh3 Jz y x (n2(n yoxo - tanh fl y,x,) - 4J"L y,x,)1 . 

0 00 
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The integrals in (B.8c) can be evaluated by taking derivatives with respect to 

k(at k = 0) of the same Fourier transforms which were used to evaluate (B.3). 

In Section III, only the form of the kinetic energy for y, = 1 (and con- 

stant in time) is required, and thus only ml(xo,l) is relevant. Recalling 

M = 2@3, we see that 

(B.9a) ml(xo,l) = 2M + 21(x,) 

where 

IO(,) = 4Jz 
sech* $? x0 

m x0 - tanh fl x0) . (B.9b) 
tanha fl x0 

Hence the kinetic energy term appropriate for the discussion of Section III is, 

as indicated in (3.2), 

T = M;: + 1(x0)$ , 

where 1(x,) vanishes exponentially as x0 + 01, as asserted in the text. 

With these technical details established, we turn next to our genera 

cussion of the use of collective coordinates to describe kink motion. 
19,25 

For simplicity, let us start at an intuitive level by recalling that our 

1 dis- 

,30,32,53 

whole 

approach to the resonance phenomenon rested on isolating two (of the infinitely 

many) degrees of freedom for each of the ankikink/kink pair: namely, the rigid 

translational motion and the shape oscillation. Clearly these are coordinates 

being used to describe collective motions and are thus, at a practical level, 

"collective coordinates" for the kink and antikink. To understand these collec- 

tive coordinates in more detail, we can start by focussing on the case of a 
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single kink and recalling (see Section II) that in the small oscillations around 

the kink solution there are two discrete modes which correspond directly to our 

two coordinates. One, with characteristic frequency w = 0, corresponds to the 

infinitesimal translations of the kink. The second, with w = &?, represents a 

localized deformation of the kink shape. Although we have argued that both can 

be thought of as collective coordinates, there is a very important distinction 

between them. Since the 'j4 equation in (1.4) is translationally invariant in 

space, the energy of a single kink--obtained by inserting (1.6) into (1.5)--is 

independent of the location of the kink [x0 in (1.6)]. As a consequence of this 

invariance, in the expansion around the kink one finds a mode with UJ = 0; in 

particle physics language, this is the "Goldstone mode" arising from the break- 

ing of the translational invariance of the theory that occurs by placing the 

kink at a definite location. 55,56 Because it is related to a symmetry of the 

equation, the collective coordinate corresponding to this mode is a "strict" 

collective coordinate in the sense that it can not be treated simply by linearly 

superposing the corresponding eigenfunction (which is the spatial derivative of 

the kink) with the kink itself. In classical perturbation theory, this would 

lead to a "secular" term: that is, a perturbation whose effect increases (in 

this' case linearly) in time. In quantum fluctuation theory, this would lead to 

unbounded (i.e., infinite) fluctuations. The correct way to account 553 for 

the translational degree of freedom of the kink is to do precisely what we did 

with only a heuristic motivation above : namely, allow the location of the kink, 

xo, to become a time-dependent coordinate and determine its motion so as to 

eliminate secular perturbations or unbounded fluctuations. Thus, for the trans- 

lational motion of a single kink, our heuristic collective coordinate approach 

can be made rigorous. 55-58 
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In the case of the shape mode at ws = m, there is no associated symmetry, 

and hence it can be termed an "approximate" collective coordinate. Isolating it 

from among all the other degrees of freedom is based on the physical and intui- 

tive arguments given in the text. It remains an interesting, open problem to 

understand rigorously the role of this discrete mode in full, nonlinear 

perturbation theory around the kink.57 

All of the above remarks on collective coordinates have applied to the 

case of a single kink. In our application to Kk scattering, the effective 

replacement of the kink and antikink by their translational and shape deforma- 

tion degrees of freedom is always an approximation. In particular, the coordi- 

nate 2x0 in (3.1) or (B.l), which represents the separation between the kink 

and antikink, does not correspond to any underlying symmetry of the equation; 

an easy way to see this is to note that the energy corresponding to the field 

configuration in (3.1) or (B.l) is a strong function of x0. 

The reason our approximate approach works so well for Kk scattering appears 

to be, as indicated in the text, the existence of a long interval between the 

first and second KF collisions during which the kinks are effectively separated 

and acting only as perturbations on each other. 

To conclude this discussion of collective coordinates we should mention a 

recent alternative formulation 19,53,59,60 in which the effects of the shape 

mode oscillation, rather than being linearly superposed as in our approach, are 

incorporated parametrically directly in the kink waveform. This approach has 

been used to describe the coupling of shape oscillations and translations of 

.solitons, perturbed by external radiation, in a model of polyacetylene. 19,53 

In our discussion at the beginning of this Appendix, this method is illustrated 

by the introduction of y, in (B.l). To distinguish these two approaches, let us 
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refer to the first as the "linear eigenfunction collective coordinate" (LECC) 

approach and the second as the "parametric collective coordinate" (PCC) approach. 

To understand the general features of the PCC approach, as well as its 

relation to the LECC method, it is useful to start with the case of a single 

kink, for which the PCC Ansatz including translational and shape degrees of 

freedom is 

@‘A(X;Xo(t) ,Y,W = tanh 
Y,(~>(X - x,(t)> 

z l 

(B.10) 

Clearly by substituting this expression into (1.5) and using (B.6b) to evaluate 

the time derivative, one can obtain an effective Hamiltonian for the collective 

coordinates x0 and y,. Before doing this, let us first observe the relation 

between the PCC and LECC that follows by considering the form of (B.10) for 

static x0 and y, and for y, near its value for a true solution to (1.4), 

YO 
=l+&. Expanding in powers of E, one sees 

$A(x;xo,yo = 1 + E) = tanh(x 
‘X 

') + 2 (x - 
e si 

xo)sech2 
(x - x0> 

+ O(e2) . 
Jz 

(B.11) 

Thus, at this level, the PCC approach amounts to approximating the true linear 

eigenfunction corresponding to the shape mode, 

(x - x0> (x - x0> 

%" sech Jz 
tanh 

Jz 
(8.12) 
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@@,)A a cx 
2x-xo - x,)sech ( 

1 l 

@ 
(B.13) 

Clearly these functions are qualitatively similar for x N x0 but differ quanti- 

tatively, particularly in their rate of exponential falloff as x - x0 + 03. Note 

that this comparison, apart from showing the qualitative similarity, also shows 

that the PCC Ansatz, unlike the LECC,form, is not exact to O(c'). This makes 

any direct attempt to put this approach on more rigorous footing difficult. 57 

If one nonetheless pursues the PCC approach, one finds that it leads to an 

interesting, closed coupled system of equations for x,(t) and y,(t). These can 

be derived from the effective Hamiltonian obtained by substituting (B.ll) into 

(1.5). Alternatively, one can simply take the x0 + 01 limit of the expressions 

in (B.Z)-(B.8), and divide by two since they refer to the kink plus antikink 

configuration (B.l). Either way, one finds 19,53,59,60 

% g Heff(xo ,y,) = F yo”; + f (% - 1) jj~ + 3 (Y, + ;) l 

0 

From this effective Hamiltonian one obtains the equations 

2 (X,Y,) = 0 , so xoy 
0 

= constant = 01 

and 

. . 
PC 2 i2 

0 
-$I 

0 

+$(l- 
(l T2) ) = O ' 

(B.14) 

(B.15a) 

(B.15b) 

where $ = n*/6 - 1. 
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It is easy to see that these PCC equations admit the solution i. = v, 

YO 
= (1 - v*>-‘l, which corresponds to the rigidly translating, Lorentz-con- 

tracted kink which is an exact solution to the full equation (1.4). With a bit 

more analysis, one can show that Eq. (8.15) admits an exact time dependent solu- 

tion, in which 59,60 

YO 
= dXo 

and 

;( = 
O Ji&l 

(CY + &F-i sinwt) 

(B.16a) 

(B.16b) 

with w* = (1 + 012)/& 

In terms of the full equation, this solution would correspond to a 

"wobbli.ng" and translating isolated kink. Of course, one can show directly that 

using this solution in the Ansatz (B.lO) does not produce an exact solution to 

the full field equation (1.4). Nonetheless, it does raise an interesting ques- 

tion concerning the possible existence of a wobbling kink solution to Q4. 

Clearly, this deserves further investigation. 

An important aspect of this question, particularly from the perspective of 

comparing the PCC and LECC approaches, is that the PCC Ansatz would lead to no 

natural distinction between the I$~ and sine-Gordon equations. Specifically, if 

one took for a sine-Gordon kink an Ansatz comparable to (B.l), 

uAkXo(t)lyo(t)) = 4 tan 
-1 Y,(t>(x-x,(t)~ 

e , (B.17) 
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one would obtain coupled equations for x0 and y, of precisely the same form as 

(B.15), with slightly different constants. Yet in the LECC appraoch, one finds 

immediately that in the small oscillations around the sine-Gordon kink, the only 

localized mode is the translation mode at w = 0; there is no discrete mode 

corresponding to a shape oscillation. In essence, the PCC approach implies 

that modes from the continuum can play the role of the shape oscillation and, 

just as in $4, lead to a wobbling kink. Although much further study is needed 

in this context as well, there'are several potential problems with this result. 

First, at a rigorous level, using perturbation theory with inverse scattering 

techniques (which can be applied because the unperturbed sine-Gordon equation 

is integrable), one can show that the asymptotic form of perturbed sine-Gordon 

kink can not wobble. 61 Second, at a phenomenological level, the calculations 

of Kk collisions in the modified sine-Gordon equation 49 show that there does 

appear to be a striking distinction between the cases in which a discrete shape 

mode is present and those in which it is not; in the former one finds resonances 

in the scattering, in the latter one doesn’t. Thus it seems important to pursue 

the comparative study of the PCC and LECC approaches to clarify this and related 

questions. 
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